# How to convert Degrees to Radians

## Degrees to radians conversion formula

One degree is equal 0.01745329252 radians:

1° = π/180° = 0.005555556π = 0.01745329252 rad

So angle α in radians is equal to the angle α in degrees times pi constant divided by 180 degrees:

α(radians) = α(degrees) × π / 180°

or

radians = degrees × π / 180°

#### Example 1

Convert 25 degrees angle to radians:

α(radians) = α(degrees) × π / 180° = 25° × 3.14159 / 180° = 0.436332313 rad

#### Example 2

Convert 50 degrees angle to radians:

α(radians) = α(degrees) × π / 180° = 50° × 3.14159 / 180° = 0.872664626 rad

#### Example 3

Convert 90 degrees angle to radians:

α(radians) = α(degrees) × π / 180° = 90° × 3.14159 / 180° = 1.5707963268 rad

## Degrees to radians in terms of pi

So The angle α in radians is equal to the angle α in degrees times pi constant divided by [180] degrees.

α(radians) = (α(degrees) / 180°) × π

#### Example 1

Convert 40 degrees angle to radians in terms of pi:

α(radians) = (α(degrees) / 180°) × π = (40° / 180°) × π

#### Example 2

Convert 90 degrees angle to radians in terms of pi:

α(radians) = (α(degrees) / 180°) × π = (90° / 180°) × π

#### Example 3

Convert 120 degrees angle to radians in terms of pi:

α(radians) = (α(degrees) / 180°) × π = (120° / 180°) × π

How to convert radians to degrees ►